Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
نویسندگان
چکیده
The fast growing and abundant use of silver nanoparticles (AgNPs) in commercial products alerts us to be cautious of their unknown health and environmental risks. Because of the inherent redox instability of silver, AgNPs are highly dynamic in the aquatic system, and the cycle of chemical oxidation of AgNPs to release Ag(+) and reconstitution to form AgNPs is expected to occur in aquatic environments. This study investigated how inevitable environmentally relevant factors like sunlight, dissolved organic matter (DOM), pH, Ca(2+)/Mg(2+), Cl(-), and S(2-) individually or in combination affect the chemical transformation of AgNPs. It was demonstrated that simulated sunlight induced the aggregation of AgNPs, causing particle fusion or self-assembly to form larger structures and aggregates. Meanwhile, AgNPs were significantly stabilized by DOM, indicating that AgNPs may exist as single particles and be suspended in natural water for a long time or delivered far distances. Dissolution (ion release) kinetics of AgNPs in sunlit DOM-rich water showed that dissolved Ag concentration increased gradually first and then suddenly decreased with external light irradiation, along with the regeneration of new tiny AgNPs. pH variation and addition of Ca(2+) and Mg(2+) within environmental levels did not affect the tendency, showing that this phenomenon was general in real aquatic systems. Given that a great number of studies have proven the toxicity of dissolved Ag (commonly regarded as the source of AgNP toxicity) to many aquatic organisms, our finding that the effect of DOM and sunlight on AgNP dissolution can regulate AgNP toxicity under these conditions is important. The fact that the release of Ag(+) and regeneration of AgNPs could both happen in sunlit DOM-rich water implies that previous results of toxicity studies gained by focusing on the original nature of AgNPs should be reconsidered and highlights the necessity to monitor the fate and toxicity of AgNPs under more environmentally relevant conditions.
منابع مشابه
Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کاملBiosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کاملFacile preparation of silver nanoparticles and antibacterial Chitosan-Ag polymeric nanocomposites
Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron...
متن کاملBiotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior ...
متن کاملAntibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract
Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2014